Publications & Presentations

A. G. Smith
An automated optimisation technique for rocket motor nozzle design based on Phoenics flowfield solution

Publication: Presented at Phoenics User Conference, Moscow 2002

CFD has been in use for the prediction of rocket motor exhaust nozzles for many years. The problems of nozzle performance, surface heat transfer and chemical reaction are some of the reasons why analysis of this type is required. However, such analysis work has often been carried out with pre-existing designs or maybe with a few iterations of a given design. The pressure ratios used with rocket motors mean that a supersonic flow emanates from the nozzle. The shape of the nozzle is important for two reasons 1/ the exit velocity and pressure combine to provide the thrust and 2/ the shape of the nozzle throat determines the mass flow that the nozzle can pass. By modelling the nozzle flowfield in some detail, including the chemical reactions that might take place, the nozzle performance can be predicted. This work describes an automated technique for progressively modifying a nozzle geometrical parameter and recalculating the performance of the nozzle so that the performance can be optimised. An example is shown of the technique and recommendations are made with regard to future development work in this area. This work was initiated by QinetiQ with funding from UK MoD research package TG06.

Back to publications

© S & C Thermofluids Ltd 2014

S & C Thermofluids Ltd

The Old Tannery, Kelston, Bath, BA1 9AN
Tel: 0117 932 7378 Fax: 0117 932 9652

Connect with us: